Journal of Organometallic Chemistry, 275 (1984) 63-70 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

BIS-μ-HYDROXO-BIS(π-CYCLOPENTADIENYLDINITRATOZIRKONIUM-(IV))TETRAHYDROFURAN(1/2), EIN ZWEIKERNIGER ORGANOZIRKONIUM(IV)-KOMPLEX MIT SIEBENFACH KOORDINIERTEN METALLZENTREN

WILTRAUD LASSER und ULF THEWALT*

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, D-7900 Ulm-Donau (B.R.D.)

(Eingegangen den 8. Mai 1984)

Summary

 Cp_2ZrCl_2 reacts with nitric acid in CHCl₃ to yield a dinuclear, doubly OH-bridged complex which can be isolated together with tetrahydrofuran of crystallization: $[\pi-C_5H_5Zr(NO_3)_2(\mu-OH)]_2 \cdot 2THF$ (B). The crystal data of B are as follows: space group $P2_1/c$, a 8.825(2), b 12.137(3), c 13.018(2) Å, β 97.61(2)°. The unit cell contains two dinuclear centrosymmetric metal complexes and four molecules of tetrahydrofuran of crystallization. The Zr atom has a pentagonal-bipyramidal coordination geometry with the Cp group occupying an axial position, two chelating NO₃ ligands and one OH bridging group in the equatorial plane, and one OH group in the other axial position.

Zusammenfassung

Bei der Umsetzung von Cp_2ZrCl_2 mit Salpetersäure in CHCl₃ entsteht ein zweikerniger, zweifach OH-verbrückter Komplex, der in Gegenwart von Tetrahydrofuran isoliert werden kann: $[\pi-C_5H_5Zr(NO_3)_2(\mu-OH)]_2 \cdot 2THF$ (B). Kristalldaten von B: a 8.825(2), b 12.137(3), c 13.018(2) Å, β 97.61(2)°; Raumgruppe P2₁/c. Die Elementarzelle enthält zwei dinukleare zentrosymmetrische Metallkomplexe und vier Kristall-THF-Moleküle. Das Zr-atom besitzt eine pentagonal-bipyramidale Koordination mit der Cp-Gruppe in der einen axialen Position, den NO₃-Liganden und einer OH-Gruppe in der Äquatorebene und der anderen OH-Gruppe in der zweiten axialen Position.

Einführung

Nur wenige Titan- und Zirkoniumkomplexe mit der π -C₅H₅M^{IV}-Baueinheit sind bekannt, in denen das Metallzentrum die 18-Elektronenkonfiguration erreicht. Dies

ist sicherlich darauf zurückzuführen, dass die M⁴⁺-Zentralionen nur unter sterisch besonders günstigen Voraussetzungen—insbesondere wenn potentielle Chelatliganden vorliegen—die entsprechende Zahl von Ligandatomen um sich gruppieren können. Beispiele entsprechender Verbindungen sind die bezüglich ihrer Struktur gesicherten Komplexe π -C₅H₅Ti(S₂CN(CH₃)₂)₃ [1] und π -C₅H₅Ti(NO₃)₃ [2] sowie einige π -C₅H₅ZrX₃-Verbindungen mit X⁻ = Anion eines 1,3-Diketons, wie beispielsweise π -C₅H₅Zr(CF₃C(O)CHC(O)CF₃)₃ [3]. Die genannten Komplexe besitzen eine pentagonal-bipyramidale Struktur, wobei der C₅H₅-Ligand eine axiale Position besetzt; vergl. Formel A.

In der vorliegenden Arbeit berichten wir über Darstellung und Struktur eines weiteren siebenfach koordinierten Zr-Komplexes mit Chelatliganden, und zwar des Zweikernkomplexes $[\pi$ -C₅H₅Zr(NO₃)₂(μ -OH)]₂ · 2THF (**B**), auf den wir bei unseren Untersuchungen über die Hydrolyse von $(\pi$ -C₅H₅)₂ZrCl₂ gestossen sind. In **B** liegt die von den rein anorganischen basischen Zirkoniumsalzen her bekannte

Baueinheit vor.

Experimentelles und Strukturbestimmung

Darstellung von $[\pi - C_5 H_5 Zr(NO_3)_2(\mu - OH)]_2 \cdot 2THF$

Eine Lösung von 0.73 g (2.5 mmol) $(\pi$ -C₅H₅)₂ZrCl₂ in 25 ml CHCl₃ wurde langsam unter starkem Rühren mit 20 ml halbkonzentrierter Salpetersäure versetzt. Die organische Phase wurde abgetrennt, über Na₂SO₄ getrocknet und mit 10 ml Tetrahydrofuran überschichtet. Innerhalb eines Tages wuchsen dann an der Gefässwand farblose, nadelförmig ausgebildete Kristalle der Titelverbindung, die abgesaugt und mit wenig THF gewaschen wurden. Ausbeute 0.70 g (76%). Gef.: C, 29.46; H, 3.96; N, 7.62. C₁₈H₂₈N₄O₁₆Zr₂ (738.88) ber.: C, 29.26; H, 3.82; N, 7.58%. IR-Daten (Nujol, cm⁻¹) und Interpretation: (760s, 790m, 1010vs, 1270s, 1550s: NO₃), (830s, 1010vs: C₅H₅), (1035m: OC₄H₈), (3450m: OH).

TABELLE 1

Atom	x	у	Z	U _{eq}
Zr	-0.0448(1)	0.5578(1)	0.3768(1)	0.036(1)
0	0.1198(4)	0.5507(3)	0.5158(3)	0.039(3)
O(11)	-0.1439(5)	0.6955(3)	0.4721(3)	0.051(4)
O(12)	0.0326(5)	0.7366(3)	0.3803(3)	0.053(4)
O(13)	-0.0707(7)	0.8653(4)	0.4671(4)	0.089(7)
N(1)	-0.0597(7)	0.7701(4)	0.4413(4)	0.055(6)
O(21)	0.0980(5)	0.4087(4)	0.3343(3)	0.051(4)
O(22)	0.1752(5)	0.5723(4)	0.3039(3)	0.054(5)
O(23)	0.3105(6)	0.4296(5)	0.2674(5)	0.092(7)
N(2)	0.2006(6)	0.4672(5)	0.3004(4)	0.058(6)
C(11)	-0.2828(8)	0.6365(6)	0.2724(5)	0.062(7)
C(12)	-0.1696(8)	0.6355(6)	0.2044(5)	0.058(7)
C(13)	-0.1322(8)	0.5243(6)	0.1859(5)	0.060(7)
C(14)	-0.2205(9)	0.4542(6)	0.2431(5)	0.068(8)
C(15)	-0.3188(8)	0.5245(7)	0.2962(5)	0.066(8)
Kristall-Tet	rahydrofuran			
O(2)	-0.3498(5)	0.3095(4)	0.4428(4)	0.072(6)
C(21)	-0.3288(10)	0.2077(7)	0.3902(6)	0.082(10)
C(22)	-0.3897(13)	0.1199(7)	0.4553(8)	0.098(12)
C(23)	-0.4921(12)	0.1764(8)	0.5195(8)	0.098(11)
C(24)	-0.4626(12)	0.2940(8)	0.5128(9)	0.110(13)

ATOMPARAMETER

Röntgenstrukturanalyse

Die Messungen erfolgten bei 20°C an einem Kristallfragment $(0.1 \times 0.2 \times 0.2 \text{ mm}^3)$, das in einer Lindemann-Glaskapillare eingeschlossen war, mit graphit-monochromatisierter Mo- K_{α} -Strahlung (λ 0.71069 Å) auf einem Philips-PW-1100 Einkristalldiffraktometer. Kristalldaten: monoklin, $P2_1/c$, a 8.825(2), b 12.137(3), c 13.018(2) Å, β 97.61(2)°; gemessene Dichte: 1.77 g/cm³ (Schwebemethode; CCl_4/CH_2Br_2); für Z = 4 (bezogen auf die Formel CpZr(NO₃)₂OH · THF) berechnete Dichte: 1.775 g/cm³. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich 4° $\leq 2\theta \leq 50^\circ$; 2444 unabhängige Reflexe erfasst. Lp-, aber keine Absorptionskorrektur (μ 7.3 cm⁻¹) angebracht; 2063 Reflexe mit $F_o \geq 2\sigma(F_o)$ für die weiteren Rechnungen benutzt. Strukturbestimmung mittels der Schweratomtechnik. Mehrzahl der H-Atome in ΔF -Synthesen lokalisierbar, aber bei den Rechnungen nicht berücksichtigt. Die Verfeinerung mit anisotropen Temperaturfaktoren führte zu R = 0.052 und $R_w(F) = 0.050$; $w^{-1} = (\sigma^2(F) + 0.0006F^2)$. Atomparameter s. Tabelle 1 [4]. Maximale Restelektronendichte 0.59 e/Å³. Benutzte Formfaktorwerte für Neutralatome aus [5,6]. Benutztes Programmsystem: SHELX-System [7].

Ergebnisse und Diskussion

Der Zweikernkomplex $[\pi$ -C₅H₅Zr(NO₃)₂(μ -OH)]₂ entsteht unter Abspaltung von C₅H₅-Liganden aus $(\pi$ -C₅H₅)₂ZrCl₂ bei der Einwirkung starker Salpetersäure gemäss Gl. 1.

$$2(\pi - C_5 H_5)_2 ZrCl_2 + 4HNO_3 + 2H_2O \rightarrow [\pi - C_5 H_5 Zr(NO_3)_2(\mu - OH)]_2 + 4HCl + 2C_5 H_6$$
(1)

Nach Zugabe von Tetrahydrofuran zu seiner Lösung in Chloroform kristallisiert er zusammen mit Kristall-THF aus. $[\pi$ -C₅H₅Zr(NO₃)₂(μ -OH)]₂·2THF (**B**) bildet farblose Kristalle, die an der Luft zerfliessen. Der Komplex enthält einen

Ring, wie er in einer Reihe rein anorganischer basischer Zirkonium(IV)-Salze vorkommt [8]—beispielsweise dem $ZrOCl_2 \cdot 8H_2O$, das ringförmige $[Zr_4(OH)_8 - (H_2O)_{16}]^{8+}$ -Kationen enthält, wobei die Zr-Zentren durch je zwei OH-Gruppen verbrückt sind [9]. Unseres Wissens ist **B** die erste Organozirkonium(IV)-Verbindung mit OH-Brücken. Dass tatsächlich Hydroxo-Brücken und nicht Oxo-Brücken vorliegen, ergibt sich aus Folgendem:

(i). Die Zr-O-Abstände in **B** (2.090(4) und 2.167(3) Å), Mittelwert 2.13 Å) sind mit Zr-O-Abständen anderer Zr- μ -OH-Komplexe vergleichbar (entsprechender Mittelwert in ZrOCl₂ · 8H₂O: 2.14 Å). Andererseits ist der Zr-O-Abstand in [(π -C₅H₅)₂ZrCl]₂O mit 1.95 Å deutlich kürzer [10].

(ii). Im IR-Spektrum erscheint bei 3450 cm⁻¹ die OH-Bande.

(iii). Lägen Oxobrücken vor, so wäre der Komplex negativ geladen. Da im Kristall jedoch keine Gegenionen vorliegen, ist der Komplex neutral.

Ein einzelner Komplex ist in Fig. 1 dargestellt. Bindungsabstände und -winkel sind in Tabelle 2 aufgeführt. Der Komplex besitzt kristallographische Zentrosymme-HO

trie. Für jedes Zr-Atom fungiert eine $\sum_{HO} Zr(NO_3)_2(\pi-C_5H_5)$ -Gruppe (die das HO jeweils andere Zr-Atom enthält) als Chelatligand, so dass der Komplex ein spezieller

Vertreter des eingangs genannten allgemeinen Verbindungstyps A mit einer 18-Elektronenkonfiguration ist. Ein einzelnes Zr-Atom ist, wie ein Blick auf Fig. 2 zeigt,

Fig. 1. ORTEP-Zeichnung des zentrosymmetrischen $[\pi$ -C₅H₅Zr(NO₃)₂(μ -OH)]₂-Komplexes.

verzerrt pentagonal-bipyramidal von Ligandatomen umgeben. Die beiden Nitratliganden liegen als äquatoriale Chelatgruppen und der O-Zr'-O'-Chelatligand als äquatorial/axial gebundene Chelatgruppe vor.

Eine Blick auf Fig. 2a zeigt, dass das Molekül in erster Näherung 2/m-Symmetrie aufweist (exakt ist nur 1-Symmetrie realisiert). Die "Quasispiegelebene" (Ebene II in Tabelle 3) verläuft durch die Atome Zr, Zr', O und O' des exakt ebenen Zentralrings (exakt eben wegen des in seiner Mitte liegenden Symmetriezentrums). Das Zentrum Z des Cyclopentadienylrings liegt nur 0.004 Å ausserhalb dieser Ebene. Die fünf äquatorialen O-Atome weichen bis zu 0.109 Å von der gemeinsamen besten Ebene ab (= Ebene I = "Äquatorebene" in Tab. 3). Praktisch parallel zu dieser Ebene verläuft die Cyclopentadienylebene (Ebenenwinkel 0.7°). Das Zr-Atom ist deutlich aus der "Äquatorebene" hin zum C₅-Ring verschoben (0.457 Å). Man hat den Eindruck (vergl. Fig. 2b), dass die C₅H₅-Gruppe die äquatorialen Liganden von sich "wegdrückt". Der Abstand des Zr-Atomes von der C₅-Ringebene beträgt 2.220 Å. Die beiden zu O' *cis*-ständigen Nitrat-O-Atome O(11) und O(21) sind weiter vom Metallzentrum als die nicht-*cis*-ständigen Atome O(12) und O(22) entfernt (2.320(4), 2.314(4) gegenüber 2.274(4), 2.278(5) Å). Entsprechendes wurde auch bei anderen

TABELLE 2

BINDUNGSABSTANDE	(Å) UND -WINKEI	٬(°)٬
------------------	-----------------	-------

Atome	Abstand	Atome	Winkel
Zr-0	2.167(3)	O–Zr–O'	69.7(1)
Zr–O′	2.090(4)	Zr–O–Zr′	110.3(2)
Zr–Z	2.220	O(11) - Zr - O(12)	55.6(2)
Zr-O(11)	2.320(4)	O(21) - Zr - O(22)	55.9(2)
Zr-O(12)	2.274(4)	O(11)-Zr-O	80.8(1)
Zr-O(21)	2.314(4)	O(12)-Zr-O	81.7(1)
Zr-O(22)	2.278(5)	O(21)-Zr-O	80.9(1)
N(1)-O(11)	1.269(7)	O(22)-Zr-O	80.6(1)
N(1)-O(12)	1.277(7)	O(11)-N(1)-O(12)	114.7(5)
N(1)-O(13)	1.211(7)	O(11)-N(1)-O(13)	121.4(6)
N(2)-O(21)	1.275(8)	O(12)-N(1)-O(13)	123.9(6)
N(2)-O(22)	1.297(8)	O(21)-N(2)-O(22)	113.6(5)
N(2)-O(23)	1.201(8)	O(21)-N(2)-O(23)	123.8(6)
Zr-C(11)	2.533(7)	O(22)-N(2)-O(23)	122.5(6)
Zr-C(12)	2.546(6)	C(11)-C(12)-C(13)	108.3(6)
Zr-C(13)	2.535(6)	C(12)-C(13)-C(14)	108.9(6)
Zr-C(14)	2.510(7)	C(13)-C(14)-C(15)	107.4(6)
Zr-C(15)	2.537(7)	C(14)-C(15)-C(11)	106.8(6)
C(11)-C(12)	1.420(10)	C(15)-C(11)-C(12)	108.7(6)
C(12) - C(13)	1.417(10)	C(21) - O(2) - C(24)	109.3(6)
C(13) - C(14)	1.428(11)	C(21)-C(22)-C(23)	106.2(7)
C(14) - C(15)	1.456(11)	C(22)-C(23)-C(24)	107.1(9)
C(15)-C(11)	1.439(11)	C(23)-C(24)-O(2)	108.0(8)
O(2) - C(21)	1.436(10)	O(2)-C(21)-C(22)	105.2(7)
C(21) - C(22)	1.504(13)		
C(22)-C(23)	1.479(15)		
C(23)-C(24)	1.456(13)		
C(24)-O(2)	1.448(13)		

^{*a*} Z ist der Schwerpunkt des C_5H_5 -Ringes. Zu den Ausgangsatomen inversionssymmetrische Atome sind durch einen Apostroph gekennzeichnet.

n n n n n n n n n n n n n n n n n n n									
Ebene	Definierende Atome	$\begin{array}{c} A, B, \\ Ebene\\ Ax + \\ 0 \end{array}$	C, D in der ngleichung By + Cz - D =	Abweichun der Ebene ^c	gen der Ato	ne von			
I Aquator- ebene	0′, 0(11), 0(12), 0(21), 0(22)	5.39 3.78	4, 0.222, 9.156, 8	0' 0(12) 0(21) Zr	99, 32, - 109,	N(1) 0(13) 0(22) 7	101, 299, 66, - 2677	O(11) N(2) O(23)	- 88 147, 430,
II Quasi- spiegel- ebene	Zr, 0, 0′	4.65 7.56	4, 9.142, 5.981, 2	17	4	1	2		
III N(1)-Nitrat- Ebene	0(11), 0(12), 0(13)	5.22 2.19	5, –1.985, 9.161, 2	N(1)	11,	Zr	- 82		
IV N(2)-Nitrat- Ebene	0(21), 0(22), 0(23)	3.47	$\frac{1}{3}$, 0.436, 11.175, 4	N(2)	3,	Zr	44		
V Cp-Ebene	C(11), C(12), C(13), C(14), C(15)	5.41 1.17	6, 0.361, 9.123, 6	C(11) C(14)	7, 11.	C(12) C(15)	0, - 11.	C(13) Zr	- 7, 2220
Winkel zwischen de	n Ebenen (°)								
1/II II/II III/IV	89.9 82.8 I 17.8 II		10.5 79.6 11.2	V/I/ V/II V/VI		14.5 89.5 14.7	N/1	0.7	
" Siehe Anmerkunį	ten zu Tabelle 2. $b x, y, z$	sind auf die	Basis (a, b, c) bezogei	ne Punktkoord	inaten. 'Di	e Werte (in Å) s	ind mit 10 ³ mi	ultıplıziert.	

EBENEN, BEST EBENEN, ABWEICHUNGEN DER ATOME VON IHNEN UND WINKEL ZWISCHEN IHNEN⁴

TABELLE 3

68

Fig. 2. Zwei Projektionen von $[\pi-C_5H_5Zr(NO_3)_2(\mu-OH)]_2$: (a) entlang dem Zr-O-Vektor und (b) senkrecht auf die Ebene des zentralen Zr-O-Zr'-O'-Rings.

 π -C₅H₅M(Chelat)₃-Komplexen, wie beispielsweise π -C₅H₅Ti(NO₃)₃ [2] beobachtet, und wie dort ist im dritten Chelatring die axiale Metall-O-Bindung länger als die äquatoriale (2.167(3) gegenüber 2.090(4) Å in **B**; 2.156(3) gegenüber 2.068(2) Å in π -C₅H₅Ti(NO₃)₃).

Das neben dem Metallkomplex in der vorliegenden Kristallstruktur vorkommende Tetrahydrofuran fungiert als Kristall-THF. Es ist nicht an die Metallzentren gebunden. Es bildet allerdings mit seinem O-Atom (O(2) bei -x, 1-y, 1-z) einen engen Kontakt (2.65 Å) zum Brücken-O-Atom des Metallkomplexes. Dieser Kontakt stellt sicherlich eine H-Brücke dar. Weitere bemerkenswert enge intermolekulare Kontakte treten nicht auf.

Dank

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung mit Sachmitteln.

Literatur

- 1 W.L. Steffen, H.K. Chun und R.C. Fay, Inorg. Chem., 17 (1978) 3498.
- 2 H.-P. Klein und U. Thewalt, J. Organomet. Chem., 232 (1982) 41.
- 3 M. Elder, Inorg. Chem., 8 (1969) 2103.
- 4 Listen der anisotropen Temperaturparameter und der F_o/F_c-Werte können beim Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50887 angefordert werden.
- 5 D.T. Cromer und J.B. Mann, Acta Cryst. A, 24 (1968) 321.
- 6 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 7 SHELX-Programmsystem, G.M. Sheldrick, unveröffentlicht.
- 8 Überblick: D.C. Bradley und P. Thornton, in J.C. Bailar et al. (Hrsgb.), Comprehensive Inorganic Chemistry, Bd. 3, Pergamon Press, Oxford, 1973, S. 449-453.
- 9 A. Clearfield und P.A. Vaughan, Acta Cryst., 9 (1956) 555; T.C.W. Mak, Canad. J. Chem., 46 (1968) 3491.
- 10 J.F. Clarke und M.G.B. Drew, Acta Cryst. B, 30 (1974) 2267.